
IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF DELAWARE

ORACLE CORPORATION and)
ORACLE AMERICA, INC.,)

)
Plaintiffs,)

)
v.) Civ. No. 06-414-SLR

)
**PARALLEL NETWORKS, LLC,)

)
Defendant.)

Mary B. Graham, Esquire of Morris, Nichols, Arsht & Tunnell LLP, Wilmington,
Delaware. Counsel for Plaintiffs. Of Counsel: James G. Gilliland, Esquire, Theodore
T. Herhold, Esquire, Joseph A. Greco, Esquire, Robert J. Artuz, Esquire, and Eric M.
Hutchins, Esquire of Townsend and Townsend and Crew LLP, Palo Alto, California;
Dorian Daley, Esquire, Peggy E. Bruggman, Esquire, and Matthew M. Sarboraria,
Esquire of Oracle Corporation & Oracle U.S.A., Inc., Redwood Shores, California.

John W. Shaw, Esquire and Karen E. Keller, Esquire of Young Conaway Stargatt &
Taylor, Wilmington, Delaware. Counsel for Defendant. Of Counsel: George S. Bosy,
Esquire and David R. Bennett, Esquire of Bosy & Bennett, Chicago, Illinois; Patrick L.
Patras, Esquire and Matthew J. Canna, Esquire of Hinshaw & Culbertson LLP,
Chicago, Illinois; and Darryl J. Adams, Esquire and Kevin J. Meek, Esquire of Baker
Botts LLP, Austin, Texas.

**AMENDED MEMORANDUM OPINION

Dated: April 29, 2011
Wilmington, Delaware

accused devices satisfy the “releasing” limitation based upon the court’s construction,

with which it did not take issue. The Court did not consider the alternate infringement

arguments. See Oracle Corp. v. Parallel Networks, LLC, 325 Fed. Appx. 36, 40-41

(Fed. Cir. Apr. 28, 2010). On remand from the Federal Circuit, the court will address

noninfringement based on the “intercepting” and “dispatching” limitations, indirect

infringement, and literal infringement of claim 11 of the ‘554 patent.

II. BACKGROUND

A. The Parties and Litigation History

Oracle manufactures, sells and licenses software products for customers to use

in conjunction with the delivery of dynamic web pages. Parallel previously brought2

several actions for infringement of the ‘554 and ‘335 patents in the United States

District Court for the Eastern District of Texas. That litigation was consolidated in3

November 2005 (hereinafter, “the Texas litigation”). Oracle was not named in the

Texas litigation. An Oracle customer, Safelite Group, Inc. (“Safelite”), was named as a

defendant. Safelite asserted counterclaims that the ‘554 and ‘335 patents are invalid,

and filed a third party complaint against Oracle for indemnification. Parallel and Safelite

settled the Texas litigation and filed a stipulation of dismissal with the court on June 26,

Oracle Corporation is a software manufacturer incorporated and organized2

under the laws of Delaware with a principal place of business in Redwood Shores,
California. (D.I. 1) Oracle U.S.A., Inc., a Colorado corporation, was a wholly owned
subsidiary of Oracle Corporation. (Id.) On February 15, Oracle U.S.A., Inc. merged
with and into Sun Microsystems, Inc. and was renamed Oracle America, Inc. (D.I. 450)

epicRealm Licensing, LP v. Franklin Covey Co. et al, Civ. No. 2:05-CV-356;3

epicRealm, Licensing, LP v. Speedera Networks, Inc., Civ. No. 2:05-CV-150;
epicRealm Licensing, LP v. Autoflex Leasing, Inc. et al, Civ. No. 2:05-CV-163.

2

2006. (D.I. 282, ex. 22) A stipulation of dismissal was also filed with respect to

Safelite’s third party complaint against Oracle. On June 29, 2006, the court entered

orders dismissing both complaints. (D.I. 1 at ¶¶ 26-27)

Oracle brought its declaratory judgment suit in this court on June 30, 2006. (Id.)

In the complaint, Oracle alleges that, in a letter to Clark Consulting, Inc. (a party to the

Texas litigation), Parallel stated that Clark was required to provide discovery regarding

Clark’s use of software proprietary to Oracle. (Id. at ¶ 24) Oracle also claims that

Parallel demanded and received discovery from Safelite regarding its use of Oracle

software. (Id. at ¶ 25) Parallel moved to transfer venue and consolidate with the Texas

litigation. This court denied Parallel’s motions on March 26, 2007. (D.I. 21)

Parallel thereafter answered the complaint on May 3, 2007, in which it admitted

an actual controversy exists between the parties for jurisdictional purposes, admitted

that it sought discovery from Clark, but denied that it requested discovery specifically

relating to Safelite’s use of Oracle software. (D.I. 25 at ¶ 25) Parallel also brought a

counterclaim of patent infringement. (Id.) Oracle amended its complaint on October

15, 2007, to add a claim that the ‘554 and ‘335 patents are unenforceable due to

inequitable conduct. (D.I. 369) As discussed above, the court granted Oracle’s motion

for summary judgment of noninfringement based on the “releasing” limitation, and did

not reach arguments regarding noninfringement based on the “intercepting” and

“dispatching” limitations, nor on indirect infringement. (D.I. 400) The court denied

Parallel’s motion for partial summary judgment of infringement based on the “releasing”

limitation. (Id.) The Federal Circuit vacated this court’s ruling of noninfringement,

holding that the accused products could be found to infringe, based on this court’s

3

construction and a hardware scenario (freeing processor cycles) that had not been

considered. (D.I. 422 at 9) Discovery has been closed for almost three years and trial

is currently scheduled to commence May 9, 2011. (D.I. 176; D.I. 439)

B. Technological Background and the Patents-in-Suit

The basic three-tiered architecture of the internet includes what is known as a

desktop tier, an intermediate tier, and an enterprise tier. The desktop tier is composed

of a client program (web browser, such as Microsoft Internet Explorer®) located on a

user’s desktop computer, which sends and receives requests for information over the

internet. The intermediate tier comprises one or more web servers, which receive and

process user requests and return completed web pages to the client for viewing. The

enterprise tier is synonymous with data services; it comprises one or more back-end

database servers which store the information that may be used to make web pages.

Formerly, most web sites provided only “static” web pages, or pages whose

content was not subject to change. When a web client (a computer with a web

browser) identified a web site, the browser program connected to the web, and the web

server operating the web site received the request and retrieved the specific file

requested by the web client – no file modification occurred. Over time, web sites began

to provide dynamic web pages, i.e., web pages that are generated anew in response to

a specific request of the web client. To generate dynamic web pages, the Common

Gateway Interface (“CGI”) was developed. CGI is a protocol for identifying a command,

running it, and returning output from a web server. Once created, a CGI application

does not have to be modified to retrieve new data and generate a dynamic page. It

does so automatically.

4

The processing of dynamic web pages requires more processor time, memory,

and/or other system resources than is the case with static web pages. As the number

of users’ dynamic web page requests increased, so too did the demand on web server

resources, resulting in slowed response time, failure to provide the requested content,

or the crashing of the web server. The tools that generate CGI applications do not

solve these problems.

The patents-in-suit disclose systems for efficiently managing dynamic web page

generation requests. The architecture of the patented system is depicted in figure 4 of

the patents. First, a web client initiates a request for a static or dynamic web page. 4

(‘554 patent, col. 4, ll. 55-57) The request is routed to a web server. (Id. at l. 57)

Instead of the web server processing the request, an “interceptor” intercepts the request

and routes it to a “dispatcher.” (Id. at ll. 58-60) The dispatcher identifies one or more

“page servers,” or a server connected to the data source. (Id., col. 5, ll. 37-39)

The dispatcher maintains a variety of information on each page server to select

the appropriate page server. (Id., col. 5, ll. 54-59) The patents provide several

scenarios in which the dispatcher selects a page server. The first is “connection

caching,” whereby a dispatcher determines that a particular page server “has access to

the requisite data” in the data source. (Id., col. 5, ll. 60-67) Alternatively, the dispatcher

may determine that a particular page server “already has the necessary data cached in

the page server’s page cache” and, even though another page server may also be

logged into the appropriate data source, it selects the server containing the cached

The ‘335 patent was issued from a continuation application claiming priority to4

the ‘554 patent; therefore, both patents share the same specification and filing date.

5

data. (Id., col. 6, ll. 1-11) Lastly, the dispatcher may determine that multiple page

servers are logged into the appropriate data source, in which case the dispatcher will

select the “least busy” page server. (Id., col. 6, ll. 12-19) This “load balancing” can

“significantly increase performance at a busy web site.” (Id.)

The patents provide that, while a page server is processing the request for data

retrieval, the web server is free to concurrently process other web client requests,

promoting web site efficiency. (Id., col. 6, ll. 21-27) The page server dynamically

generates a web page in response to the web client request, and the web page is either

transmitted back to the web client or stored on a machine that is accessible to the web

server for later retrieval. (Id. at col. 6, ll. 27-31)

Parallel asserts that Oracle infringes claims 1-5 and 7-11 of the ‘554 patent and

claims 2 and 16 of the ‘335 patent. The asserted independent claims of the ‘554 patent

read as follows:

1. A computer-implemented method for managing a dynamic Web page
generation request to a Web server, said computer-implemented method
comprising the steps of:
routing said request from said Web server to a page server, said page server
receiving said request and releasing said Web server to process other requests,
wherein said routing step further includes the steps of intercepting said request
at said Web server, routing said request from said Web server to a dispatcher,
and dispatching said request to said page server;
processing said request, said processing being performed by said page server
while said Web server concurrently processes said other requests; and
dynamically generating a Web page in response to said request, said Web page
including data dynamically retrieved from one or more data sources.

9. A networked system for managing a dynamic Web page generation request,
said system comprising:
one or more data sources;
a page server having a processing means;
a first computer system including means for generating said request; and

6

a second computer system including means for receiving said request from said
first computer, said second computer system also including a router, said router
routing said request from said second computer system to said page server,
wherein said routing further includes intercepting said request at said second
computer, routing said request from said second computer to a dispatcher, and
dispatching said request to said page server said page server receiving said
request and releasing said second computer system to process other requests,
said page server processing means processing said request and dynamically
generating a Web page in response to said request, said Web page including
data dynamically retrieved from said one or more data sources.

11. A machine readable medium having stored thereon data representing
sequences of instructions, which when executed by a computer system, cause
said computer system to perform the steps of:
routing a dynamic Web page generation request from a Web server to a page
server, said page server receiving said request and releasing said Web server to
process other requests wherein said routing step further includes the steps of
intercepting said request at said Web server, routing said request from said Web
server to a dispatcher, and dispatching said request to said page server;
processing said request, said processing being performed by said page server
while said Web server concurrently processes said other requests; and
dynamically generating a Web page, said Web page including data retrieved
from one or more data sources.

Claim 2 of the ‘335 patent depends from claim 1. Those claims read as follows:

1. A computer-implemented method for managing a dynamic Web page
generation request to a Web server, said computer-implemented method
comprising the steps of:
routing a request from a Web server to a page server, said page server receiving
said request and releasing said Web server to process other requests wherein
said routing step further includes the steps of:
intercepting said request at said Web server and routing said request to said
page server;
processing said request, said processing being performed by said page server
while said Web server concurrently processes said other requests; and
dynamically generating a Web page in response to said request, said Web page
including data dynamically retrieved from one or more data sources.

2. The computer-implemented method in claim 1 wherein said step of routing
said request includes the steps of:
routing said request from said Web server to a dispatcher; and
dispatching said request to said page server.

Asserted claim 16 of the ‘335 patent depends from claim 15, as follows:

7

15. A computer-implemented method comprising the steps of:
transferring a request from an HTTP-compliant device to a page server, said
page server receiving said request and releasing said HTTP-compliant device to
process other requests wherein said transferring step further includes the steps
of:
intercepting said request at said HTTP-compliant device and transferring said
request to said page server;
processing said request, said processing being performed by said page server
while said HTTP-compliant device concurrently processes said other requests;
and
dynamically generating a page in response to said request, said page including
data dynamically retrieved from one or more data sources.

16. The computer-implemented method in claim 15 wherein said step of
transferring said request includes the steps of:
transferring said request from said HTTP-compliant device to a dispatcher; and
dispatching said request to said page server.

C. Accused Products

Parallel asserts that the following Oracle products infringe the patents-in-suit: (1)

the Oracle Web Cache Products, beginning in November 2000 with Release 1.0.2 and

all subsequent releases (“the Web Cache products”); (2) the Oracle Application Server

Products beginning in April 2003 with Release 10gR1 (9.0.4) and all subsequent

releases (“the Application Server products”); (3) the Oracle Database Products with

Real Application Clusters (“RAC”) beginning in May 2005 with Release 10gR2

(10.2.0.1.0) for JDBC and all subsequent releases and beginning in October 2007 with

Release 11g (11.1) for OCI and all subsequent releases (“the Database products”). 5

These products will be discussed in more detail infra in the context of the parties’

infringement/noninfringement arguments.

Parallel contends that the Web Cache products and Application Server products5

infringe every asserted claim, while the Database products allegedly infringe all
asserted claims except claims 4 and 5 of the ‘554 patent.

8

III. STANDARD OF REVIEW

A. Summary Judgment

A court shall grant summary judgment only if “the pleadings, depositions,

answers to interrogatories, and admissions on file, together with the affidavits, if any,

show that there is no genuine issue as to any material fact and that the moving party is

entitled to judgment as a matter of law.” Fed. R. Civ. P. 56(c). The moving party bears

the burden of proving that no genuine issue of material fact exists. See Matsushita

Elec. Indus. Co. v. Zenith Radio Corp., 475 U.S. 574, 586 n.10 (1986). “Facts that

could alter the outcome are ‘material,’ and disputes are ‘genuine’ if evidence exists from

which a rational person could conclude that the position of the person with the burden

of proof on the disputed issue is correct.” Horowitz v. Fed. Kemper Life Assurance Co.,

57 F.3d 300, 302 n.1 (3d Cir. 1995) (internal citations omitted). If the moving party has

demonstrated an absence of material fact, the nonmoving party then “must come

forward with ‘specific facts showing that there is a genuine issue for trial.’” Matsushita,

475 U.S. at 587 (quoting Fed. R. Civ. P. 56(e)). The court will “view the underlying facts

and all reasonable inferences therefrom in the light most favorable to the party

opposing the motion.” Pa. Coal Ass’n v. Babbitt, 63 F.3d 231, 236 (3d Cir. 1995). The

mere existence of some evidence in support of the nonmoving party, however, will not

be sufficient for denial of a motion for summary judgment; there must be enough

evidence to enable a jury reasonably to find for the nonmoving party on that issue. See

Anderson v. Liberty Lobby, Inc., 477 U.S. 242, 249 (1986). If the nonmoving party fails

to make a sufficient showing on an essential element of its case with respect to which it

9

has the burden of proof, the moving party is entitled to judgment as a matter of law.

See Celotex Corp. v. Catrett, 477 U.S. 317, 322 (1986).

B. Infringement

“Determining whether a patent claim is infringed requires a two-step analysis:

‘First, the claim must be properly construed to determine its scope and meaning.

Second, the claim as properly construed must be compared to the accused device or

process.’” Nike Inc. v. Wolverine World Wide, Inc., 43 F.3d 644, 646 (Fed. Cir. 1994)

(quoting Carroll Touch, Inc. v. Electro Mechanical Sys., 15 F.3d 1573, 1576 (Fed. Cir.

1993)). To prove direct infringement, the plaintiff must establish, by a preponderance of

the evidence, that one or more claims of the patent read on the accused device literally

or under the doctrine of equivalents. See Advanced Cardiovascular Sys., Inc. v.

Scimed Life Sys., Inc., 261 F.3d 1329, 1336 (Fed. Cir. 2001). To establish literal

infringement, “every limitation set forth in a claim must be found in an accused product,

exactly.” Southwall Tech., Inc. v. Cardinal IG Co., 54 F.3d 1570, 1575 (Fed. Cir. 1995).

“If any claim limitation is absent from the accused device, there is no literal infringement

as a matter of law.” Bayer AG v. Elan Pharm. Research Corp., 212 F.3d 1241, 1247

(Fed. Cir. 2000). Significant to the case at bar, if an accused product does not infringe

an independent claim, it also does not infringe any claim depending thereon.

Wahpeton Canvas Co. v. Frontier, Inc., 870 F.2d 1546, 1553 (Fed. Cir. 1989).

To prove infringement by the doctrine of equivalents, a patentee must provide

“particularized testimony and linking argument” as to the “insubstantiality of the

differences” between the claimed invention and the accused product, or with respect to

10

the function/way/result test. See Texas Instruments Inc. v. Cypress Semiconductor

Corp., 90 F.3d 1558, 1567 (Fed. Cir. 1996).

To establish indirect infringement, a patent owner has available two theories:

active inducement of infringement and contributory infringement. See 35 U.S.C. §

271(b) & (c). To establish active inducement of infringement, a patent owner must

show that an accused infringer “knew or should have known [their] actions would induce

actual infringements.” DSU Med. Corp. v. JMS Co., Ltd., 471 F.3d 1293, 1306 (Fed.

Cir. 2006). To establish contributory infringement, a patent owner must show that an

accused infringer sells “a component of a patented machine . . . knowing the same to

be especially made or especially adapted for use in an infringement of such patent, and

not a staple article or commodity of commerce suitable for substantial noninfringing

use.” Golden Blount, Inc. v. Robert H. Peterson Co., 365 F.3d 1054, 1061 (Fed. Cir.

2004) (quoting 35 U.S.C. § 271 (c)). Liability under either theory, however, depends on

the patent owner having first shown direct infringement. Joy Technologies, Inc. v. Flakt,

Inc., 6 F.3d 770, 774 (Fed. Cir. 1993).

IV. DISCUSSION

Parallel moves for partial summary judgment of infringement of the ‘554 patent,

arguing that the accused products infringe because they literally meet every limitation of

claim 11 of the ‘554 patent. (D.I. 224 at 1) Oracle moves for summary judgment of6

Parallel fails to create a genuine issue of material fact as to whether the6

accused products infringe under the doctrine of equivalents. Parallel’s expert Dr. David
Finkel’s supplemental report in support of a doctrine of equivalents theory is untimely,
as it was submitted after summary judgment briefing was complete. Thus, Parallel’s
argument for infringement under the doctrine of equivalents rests entirely on one
paragraph in Finkel’s second declaration stating that “[t]he Accused Oracle Products

11

noninfringement of both the ‘554 and the ‘335 patents, arguing that the accused

products do not infringe because they do not literally meet the “intercepting,”

“releasing,” and “dispatcher” limitations common to the asserted claims of both patents.

(D.I. 204 at 1-2)

A. The Accused Products

The parties do not dispute the physical characteristics of the accused products.

(D.I. 204 at 1, ¶ 2; D.I. 224 at 1)

1. Web Cache products

Web Cache is a cache server, which is a software program designed to maintain

a cache, or local store, of frequently used web pages. (D.I. 270 at ¶ 28) Web Cache

sits in front of a web server and receives a web client’s request for content before the

web server does. (Id. at ¶ 28) Web Cache caches both static and dynamic web pages.

infringe because the differences between the Accused Oracle Products and the
asserted claims are insubstantial from the perspective of a person of ordinary skill in the
relevant art.” (D.I. 273, ex. 5 at ¶ 36) Parallel cites Optical Disc Corp. v. Del Mar
Avionics, 208 F.3d 1324, 1336 (Fed. Cir. 2000), for the proposition that Finkel’s
conclusion is sufficient to create a genuine issue of material fact regarding Oracle’s
infringement by equivalents. (D.I. 275 at 38-39) However, the expert in Optical Disc
supported his conclusion regarding infringement by equivalents with a limitation by
limitation comparison of the patent and the accused product and a detailed “function-
way-result” analysis. Optical Disc, 208 F.3d at 1336. Parallel fails to show that Finkel’s
conclusion is similarly supported. In addition, the court notes that, even if Finkel’s
supplemental report had been timely filed, his doctrine of equivalents analysis is merely
a restatement of Parallel’s literal infringement arguments in the “function-way-result”
pattern and, thus, not sufficiently particularized to create a genuine issue of material
fact. Accordingly, Finkel’s conclusion is insufficient to create a material factual dispute.
See Zelinski v. Brunswick Corp., 185 F.3d 1311, 1317 (Fed. Cir. 1999) (affirming district
court’s grant of summary judgment where only evidence of infringement under doctrine
of equivalents was conclusory statement of patentee’s expert); Network Commerce,
Inc. v. Microsoft Corp., 422 F.3d 1353, 1363 (Fed. Cir. 2005) (evidence supporting
infringement by equivalents must be particularized to raise a genuine issue of material
fact).

12

(D.I. 217, ex. “Clark” at ¶ 52) In order to avoid sending outdated dynamic content to a

Web client, Web Cache uses an algorithm to periodically flush dynamic content from

the cache, forcing the next request for that dynamic content to be handled by the web

server again. (Id.) If Web Cache has the requested content in its cache (a “cache hit”),

Web Cache returns the requested content to the web client. (D.I. 270 at ¶ 28) Cache

hits are handled completely by Web Cache. (Id. at ¶ 30) If Web Cache does not have

the requested content in its cache (a “cache miss”), Web Cache sends the web client’s

request to a web server for processing. (Id. ¶ 28) The web servers sitting behind Web

Cache that originate new content in the event of a cache miss are called “origin

servers.” (Id.) Web Cache’s purpose is to cache frequently requested content in order

to reduce the load on the origin servers. (Id. at ¶ 32)

Web Cache performs its caching function by assigning each received web

request to a “fiber” within the Web Cache program. (Id.) Web Cache fibers that

connect to web clients and search the cache for requested content are called “Front

End” fibers. (Id.) Web Cache fibers that connect to an origin server and add new

content to the cache are called “Back End” fibers. (Id.)

When Web Cache receives a request from a web client, Web Cache first creates

a new Front End fiber to handle that request. (Id. at ¶ 33) The Front End fiber then7

Users may configure Web Cache for a maximum number of Front End fibers. 7

(D.I. 270 at ¶ 33) The default maximum is 700, which means that, with its default
configuration, Web Cache can support up to 700 simultaneous web client requests.
(Id.) If all 700 Front End fibers are occupied – either processing a request or waiting for
a requested web page from an origin server – then Web Cache cannot process any
additional requests until one of the 700 Front End fibers completes a request. (Id.)

13

compares the Universal Resource Locator (“URL”) of the request to the URLs of8

previously-requested content stored in the cache. (Id. at ¶ 34) If the comparison yields

a cache hit, the Front End fiber returns the requested content to the web client and the

processing is complete. (Id.) Web Cache then, unless commanded otherwise,

destroys the Front End fiber. (Id.)9

If the URL comparison yields a cache miss, then Web Cache creates a Back

End fiber, which communicates the URL of the request to an origin server and then

waits for the origin server to process the request and return the content. (Id. at ¶ 35)

The Front End and Back End fibers wait until either the origin server returns the

requested content or a time-out error occurs. (Id.) Once the origin server locates the

requested content, it returns the content to the web client via the Front End and Back

End fibers, and the content is inserted into the cache so that Web Cache can satisfy

future requests for the same content without involving an origin server. (Id. at ¶ 36)

Web Cache then destroys the Front End and Back End fibers. (Id.)

2. Application Server products

The Application Server products contain multiple software programs, such as

Oracle HTTP Server (“OHS”) and Oracle Containers For Java (“OC4J”). (Id. at ¶ 75)

A URL is a unique identifier, or address, that defines the location of a file on the8

web or any other internet facility. (D.I. 270 at ¶ 28)

Web Cache does not normally keep the Front End fiber alive to handle a second9

request. (D.I. 270 at ¶ 37) The only exception is if the web client sends further
requests over the same connection by means of a feature of version 1.1 of the HTTP
protocol known as the “Keep-Alive” command. (Id.) Where the “Keep-Alive” command
is invoked, the Front End fiber will process each of the additional requests from that
web client one at a time before being destroyed. (Id.)

14

OHS is the web server component of the Application Server products. (Id.) OHS is

based on the Apache Web server, a Web server software product developed by the

open-source software community and distributed for free over the internet. (Id.) The

OHS software program contains several built-in functions, including the HTTP Listener

and a collection of modules. (Id.) The HTTP Listener receives incoming web client

requests and passes them to the appropriate processing module. (Id. at ¶ 76) The

HTTP Listener is based on an Apache HTTP listener. (Id.) The modules perform

various functions related to the processing of web client requests. (Id. at ¶ 77) Many of

the standard Apache modules, such as mod_cgi, mod_fastcgi, mod_perl, and mod_php

are included as part of OHS. (Id. at ¶¶ 77, 82) These modules are developed and

maintained by third-parties within the open-source community. (Id. at ¶ 82) OHS also

includes several modules such as mod_oc4j and mod_plsql, developed by Oracle, that

are specific to the Application Server products. (Id. at ¶ 77, 82)

In the default configuration, there are 256 “instances,” or copies, of the OHS

program. (Id. at ¶ 81) Where Web Cache is not present or where a web client’s

request is a cache miss, one of the instances of OHS accepts the web client’s request

for processing. (Id.) The OHS instance processes the request by calling each module

in the order in which the modules were loaded into memory when the OHS program

was first started. (Id. at ¶ 82) When it calls a module, the OHS instance compares the

URL of the request against a list of types of web page content to determine whether the

request is the type of request that the module is designed to process. (Id.) Once the

15

OHS instance identifies the correct module to use, the OHS instance processes the

request using that module. (Id.)

If the OHS instance calls all of the modules and no module is capable of

processing the request, the OHS instance will attempt to satisfy the request by

accessing the content from the computer’s local storage, e.g., files on the computer’s

hard drive. (Id. at ¶ 83) If the OHS instance cannot satisfy the request from accessing

the local storage, then the OHS instance will send an error message to the web client

indicating that the requested content was not found. (Id.) Once the OHS instance

either sends the requested web page content or an error message, the OHS instance is

done processing the request. (Id.)

One of OHS’s modules, mod_oc4j, enables OHS to communicate with OC4J.

(Id. at ¶ 78) OC4J is designed to contain a user’s Java-based software applications.

(Id. at ¶ 80) A user using OC4J would design a Java-based software application and

then use OC4J to run that application when it is requested by a web client. (Id.) When

a web client requests content that requires processing by a Java-based software

application, and that request is not handled by Web Cache, an OHS instance uses

mod_oc4j to route those requests to an OC4J program. (Id. at ¶ 79) The OHS

instance then waits until OC4J returns the completed request. (Id. at ¶ 84) Once OC4J

has returned the requested content to the OHS instance, the OHS instance sends the

requested content to the web client. (Id.) Because OHS instances can process only

one request at a time, requests made while an OHS instance is engaged in responding

to a request – either processing the request itself or waiting for some other component

16

to process the request – must be handled by some other OHS instance. (Id. at ¶¶ 84-

85)

Users of the Application Server products can change some of the configuration

details concerning how mod_oc4j communicates with OC4J instances. (Id. at ¶ 86) 10

As an initial matter, users must configure OHS with mod_oc4j. (Id.) Having done that,

where users have also configured the Application Server product to have more than

one OC4J instance, mod_oc4j will load balance requests among the multiple OC4J

instances. (Id.) Users can configure mod_oc4j to perform one of eight different load

balancing policies: Random, Round Robin, Random with Local Affinity, Round Robin

with Local Affinity, Random using Routing Weight, Round Robin using Routing Weight,

Metrics Based, and Metric Based with Local Affinity. (Id.)

Round Robin is the default load balancing configuration. (Id. at ¶ 87) Round

Robin is based on a simple sequential algorithm. (Id. at ¶ 89) Mod_oc4j maintains a

list of the OC4J instances and sends requests to those OC4J instances according to

their listed order. (Id.) If the OC4J instance slated to handle the next request is still

busy processing a previously-received request, then mod_oc4j will skip over it and send

the request to the next available OC4J instance on the list. (Id.)

The only two load balancing configurations that enable mod_oc4j to route

requests based on metrics from OC4J instances are Metrics Based and Metric Based

with Local Affinity. (Id. at ¶ 87) To use either of these load balancing configurations,

the user must reconfigure mod_oc4j. (Id.)

OC4J instances are started and managed by Oracle Process Manager and10

Notification Server (“OPMN”). (D.I. 270 at ¶ 86)

17

3. Database products

The Database products consist primarily of a Relational Database Management

System (“RDBMS”). (Id. at ¶ 126) An RDBMS is a package of software programs that

control organization, storage, management, and retrieval of data in a database based

on a relational model. (Id.) An RDBMS primarily services requests for data stored in

the database. (Id.) Those requests are typically made in the form of database queries,

which are requests for data that are made in a language that the database

management system can understand. (Id.)11

The Database products do not store web pages. (Id. at ¶¶ 127-28) Data

retrieved from a Database product may be displayed in a web browser as part of a web

page, but the web page is typically constructed by a separate application (e.g., OC4J or

mod_plsql) or by a web client’s browser. (Id. at ¶ 127) For example, where a Database

product is working in conjunction with the Application Server product, a web client

request seeking Java-based content will pass from OHS to OC4J using mod_oc4j. (Id.

at ¶ 128) OC4J can retrieve data from a Database product via an application

programming interface (“API”) called JDBC and then construct a web page

incorporating the database data. (Id.)

Application servers and other database clients can connect to and query the

Database products in several ways. (Id. at ¶ 129) API is one such way. (Id.) API is

not a separate executable software program; rather, it is a set of standardized function

calls that permit a software program to issue high-level commands through a library that

An example of such language is the Structured Query Language, or “SQL.” 11

(D.I. 270 at ¶ 126.)

18

is linked into the program. (Id.) JDBC is an industry standard set of APIs that provide

the interface for connecting from Java applications to relational databases, like the

Database products, to issue database queries. (Id. at ¶ 130) C and C++ applications

can also connect to the Database products using APIs called Oracle Call Interface

(“OCI”) and the Oracle C++ Call Interface (“OCCI”), respectively. (Id. at ¶ 131) For

example, OCI consists of a set of C-language software APIs that provide a low-level

interface to the database. (Id.) OCI has APIs for administering the database (including

system start-up and shutdown) and for using PL/SQL or SQL to query, access, and

manipulate data. (Id.) Both JDBC and OCI are libraries that enable OHS to issue

commands to the Database products. (Id.) Both the Application Server products and

the Database products contain software code for these libraries. (Id.)

Oracle Real Application Clusters (“RAC”) is a database option in which a single

database is accessed by multiple instances on multiple computers, or “nodes.” (Id. at ¶

132) A typical RAC instance groups multiple database instances running on multiple

nodes. (Id.) These nodes communicate with each other and share a common pool of

disks. These disks house all of the data files that comprise the database. (Id.) An

RAC database instance can generate a web page. (Id. at ¶ 139)

B. Literal Infringement

Oracle presents three arguments against literal infringement based on the

“releasing,” “intercepting” and “dispatching” limitations shared by all asserted claims.

The Federal Circuit, as noted above, has held that summary judgment of

noninfringement cannot rest on consideration of the “releasing” limitation. Therefore,

19

this court will proceed to consider literal infringement only vis-a-vis the remaining two

limitations.

1. “Intercepting”

In its memorandum order of December 4, 2008, the court construed the limitation

“[i]ntercepting said request at said Web server” to mean “[d]iverting the handling of12

said request before the request is processed by the Web server.” (D.I. 399 at ¶ 2) The

term “said request” is a reference to preceding claim language specifying a request for

a dynamic web page.

Parallel presents two basic infringement paradigms through which it argues that

the accused products meet the “intercepting” limitation. One paradigm treats Web

Cache as the “Web server” and OHS (the web server software program within the

Application Server products) as the “page server” (“Web Cache paradigm”). (D.I. 22413

at 35) The other paradigm treats OHS as the “Web server” and either OC4J or a RAC

database instance as the “page server” (“OHS paradigm”). (D.I. 224 at 20-21; D.I. 275

at 16-17) Parallel argues that, in both paradigms, the accused products meet the

“intercepting” limitation.

The court similarly construed this term when referring to an “HTTP-compliant12

device” and a “second computer system,” as used in other asserted claims.

As Dr. Finkel reported:13

The intercepting occurs when a determination is
made that the "Web server" (for example, Oracle Web
Cache) will not satisfy the request itself with pre-existing,
cached, or static content, but rather, the request will be
satisfied with dynamic content by a "page server" (for
example, Oracle Application Server including Oracle HTTP
Server).

(D.I. 275 at 21)

20

a. Web Cache paradigm

Where Web Cache is considered to be the “Web server” and OHS the “page

server,” Parallel argues that Web Cache diverts the request (for a dynamic web page)

before the Web Cache executable can process the request because the request is

intercepted and routed to OHS instead of being processed by Web Cache. (D.I. 224 at

35) Parallel further argues that Web Cache meets the “intercepting” limitation because

“[Web Cache] processes some but not all requests.” (D.I. 275 at 20)

Oracle argues that the asserted claims require that “the ‘Web server’ of the

patents distinguish requests for dynamic content from other requests and ‘process’ or

‘handle’ them differently from, for example, requests for static content.” (D.I. 205 at 27)

In support of this argument, Oracle points to the deposition testimony of Parallel’s

expert on infringement, Dr. Finkel: “[I]ntercepting refers to intercepting dynamic Web

page generation requests.” (D.I. 214, ex. A23 at 138:14-139:12) Oracle argues that

“[b]ecause Web Cache performs its ‘processing’ or ‘handling’ of each request in the

same way regardless of the type of content requested - static or dynamic - it does not

perform the ‘intercepting’ of the asserted claims” (Id. at 28) Oracle points to the

file history of the ‘335 application, where “intercepting” was distinguished from “mere

21

routing” to overcome a rejection, and further argues that “cache misses” are merely14

routed to an origin server (OHS in this instance). (Id. at 29-30)

In sum, Oracle argues that meeting the “intercepting” limitation depends on the

criterion for diverting requests from being processed by the Web server, and that the

criterion must be whether the request is for a static or dynamic web page. Parallel, in

essence, argues that meeting the “intercepting” limitation is not dependent on the

criterion used to divert requests, and that as long as some dynamic web page requests

are diverted, the limitation is met.

b. OHS paradigm

Similar to its Web Cache argument, Parallel argues that, under the OHS

paradigm, the limitation is met because OHS “can handle some requests on its own

while other requests, such as dynamic Web page generation requests, are intercepted”

and then routed to a “page server”. (D.I. 224 at 21) Parallel further argues that the

limitation is met because the “Web server” machine (OHS) diverts the request before

the “Web server” executable can process the request. (Id.)

Claims 17-45 stand rejected under U.S.C. § 102(e) as being14

anticipated by Leaf, U.S. Pat. No. 5,754,772 (“Leaf”).
Applicants respectfully traverse this rejection for at least the
following reasons. Claim 17 recites, in part, “intercepting
said request at said Web server and routing said request to
said page server”. Leaf does not teach or suggest
“intercepting said request”. Instead, Leaf teaches that the
web server routes the request directly to the transaction
gateway client. Leaf, col. 4, lines 55-57. Leaf does not
teach or suggest “intercepting said request at said Web
server” because merely routing a request from a web server
to the transaction gateway does not involve interception.

(D.I. 214, ex. A4 at EPIC000497-98)

22

Oracle argues that “OHS does not ‘intercept’ because it never diverts requests

from their normal processing based on the request content. OHS processes all

requests by invoking its modules, one at a time, and then using the appropriate module

to process the request.” (D.I. 205 at 30) (citing D.I. 217, ex. “Clark” at ¶¶ 130-33)

Oracle asserts that OHS selects the module to handle the request based on the nature

of the request, with Java applications handled by mod_oc4j and Perl applications

handled by mod_perl. (Id.)

c. Conclusion

Oracle’s noninfringement arguments directed to the “intercepting” limitation are

drawn to its proposed claim construction. Oracle argues that intercepting requires

diversion of dynamic Web page requests based solely on the distinction between the

static and dynamic nature of the requests. This argument fails under the court’s

broader construction that requires only that the request be diverted before the request

is processed by the Web server. 15

As to literal infringement of claim 11 of the ‘554 patent, Web Cache uses an

unspecified algorithm to purge the cache of dynamic content that is outdated. Web

Cache creates a Front End fiber to process each request, static or dynamic. The Front

End fiber then searches the cache for the requested content. There is a genuine issue

of material fact as to the algorithm used to purge the cache, which ultimately

determines whether a request will be diverted. A reasonable jury could find that

The court notes that broader construction of claims, while tending to15

encompass more accused products, also increases the range of prior art which may be
used to prove invalidity.

23

creating Front End fibers, searching the cache or purging of dynamic content

constitutes processing of the request before it is diverted to an origin server. Therefore,

the court denies Parallel’s motion for partial summary judgment of infringement of claim

11 of the ‘554 patent as to the Web Cache paradigm.

Under the OHS paradigm, there is a genuine issue of material fact pertaining to

the order in which modules are loaded and, therefore, the order of their execution.

OHS includes standard Apache modules such as mod_CGI. Each module is executed,

in turn, until one handles the request, if possible. The order in which modules are

loaded into memory determines the order in which they are executed. If mod_CGI is

executed before another module that would divert the request, it may process the

request before it is diverted. This is precisely the condition that the invention attempts

to avoid. Further, a reasonable jury could find that execution of each module, in turn,

constitutes processing by OHS before diverting a request to a “page server.”

Therefore, the court denies Parallel’s motion for partial summary judgment of claim 11

of the ‘554 patent as to the OHS paradigm.

2. “Dispatching”

In its memorandum order of December 4, 2008, the court construed the limitation

“[d]ispatching said request to said page server” to mean “analyzing a request to make

an informed selection of which page server should process the request based on a

variety of information (both static and dynamic), and sending the request to the selected

page server.” Again, the term “request” refers to a dynamic web page request. Parallel

presents the same two infringement paradigms for the “dispatching” limitation as for

“intercepting.”

24

a. Web Cache paradigm

Parallel asserts that Web Cache routes requests to the OHS server with the

greatest weighted available capacity and argues, therefore, that “Web Cache is a

software program that determines which ‘page server’ should be used to process the

dynamic Web page generation request.” Parallel presents two theories under which

Web Cache “examines or analyzes a request.” First , Parallel asserts that Web Cache

examines a request to determine if it is a stateful or a stateless request. (D.I. 224 at16

36) (citing D.I. 225, ex. 11 at ORCL00513924-25) While stateful requests are routed to

the same OHS server that originally handled the request, stateless requests are

distributed based on the weighted available capacity of the OHS server. (Id.) (citing D.I.

225, ex. 11 at ORCL00513921) Second, Parallel asserts that Web Cache examines a

request to determine which OHS servers can process the request based on the URL

OracleAS Web Cache supports applications that use a16

session ID or session cookie to bind user sessions to a
given origin server in order to maintain state for a period of
time. To utilize the session binding feature, the origin server
itself must maintain state, that is, it must be stateful. An
application binds user sessions by including session data in
the HTTP header or body it sends to a client in such a way
that the client is forced to include it with its next request.
This data is transferred between the origin server and the
client through OracleAS Web Cache either with an
embedded URL parameter or through a cookie, which is a
text string that is sent to and stored on the client. OracleAS
Web Cache does not process the value of the parameter or
cookie, it simply passes the information back and forth
between the origin server and the client.

(D.I. 225, ex. 11 at ORCL00513924) To configure Web Cache to use session binding,
the name of the session parameter or session cookie must be specified. (Id. at
ORCL00513925)

25

and a configuration file, and then load balances among those found to be eligible. (Id.

at 32, 36)

Oracle argues that Web Cache lacks a “dispatcher” and, therefore, cannot

dispatch. (D.I. 205 at 31-32) According to Oracle, the Web Cache executable itself

determines whether to fetch the page from the cache (“cache hit”) or route the request

to an OHS server (“cache miss”), and the plain language of the claims requires that the

dispatcher be separate from the “Web server” since requests are routed to the

dispatcher. Further, Oracle argues that Web Cache routes cache misses directly to an

OHS server, the “page server” in this paradigm, and not to a dispatcher. (Id. at 32)

b. OHS paradigm

Under the OHS paradigm, Parallel argues that OHS (as “Web server”) routes

requests to mod_oc4j (the “dispatcher”) which further routes the request, using metric-

based load balancing, to an OC4J instance (the “page server”). (D.I. 224 at 21-22)

Parallel asserts that “mod_oc4j examines the request and then looks in a configuration

file to determine which ‘page servers’ (OC4Js) are capable of processing this type of

dynamic Web page request;” mod_oc4j can then use one of two metric-based load

balancing algorithms in determining which page server should receive the request. (Id.

at 22)

Oracle counters, in a manner similar to the Web Cache argument, that mod_oc4j

is a part of the OHS executable itself and, therefore, cannot be a “dispatcher.” (D.I.17

Oracle points out that mod_oc4j is a configurable option, and when customers17

elect to use its functionality, it is present only as part of the OHS executable. (D.I. 205
at 33)

26

205 at 33) Again Oracle argues that as part of the executable, OHS cannot route

requests to mod_oc4j, and further that OHS, using mod_oc4j, routes requests to an

OC4J process, not to a “dispatcher.” (Id.) Oracle’s arguments regarding the second

version of the OHS paradigm, where JDBC and OCI act as the “dispatcher,” follow

similar lines; these APIs are a part of the OHS executable and, therefore, cannot

represent a “dispatcher.” (Id.) Oracle further argues that “because neither JDBC nor

OCI ‘examine’ or ‘analyze’ a Web request,” they do not “dispatch.” (Id. at 34) Parallel

responds that OCI examines session tag and security attribute parameters of the

request before using runtime load balancing to select the session that can best serve

the request.” (D.I. 275 at 19)

c. Conclusion

Oracle’s arguments are again framed in the context of its proposed construction.

Oracle argues that dispatching must be performed by a software executable separate

from the “Web server.” In the case of the Web Cache paradigm, Oracle argues that

there is no “dispatcher” separate from the Web Cache executable. As to the OHS

paradigm, Oracle argues that the mod_oc4j module is a part of the OHS executable.

The court’s construction of the “dispatching” limitation, however, does not require a

separate executable. Therefore, Oracle’s motion for summary judgment in this regard

is denied.

C. Indirect Infringement

Oracle seeks summary judgment that it does not indirectly infringe the patents-

in-suit, either by inducement or contributorily. (D.I. 204; D.I. 205 at 35) Either form of

27

indirect infringement requires a predicate showing of direct infringement. Joy18

Technologies, 6 F.3d at 774. Oracle argues that, even if direct infringement is possible,

Parallel has not produced any evidence that Oracle’s customers use the accused

products in an infringing configuration. (D.I. 205 at 36) Oracle asserts that the default

configuration of the accused products does not practice the dynamic load balancing

requirement of the “dispatching” limitation, and neither of Parallel’s experts investigated

whether Oracle’s customers actually implemented this feature. (Id.) Oracle further

argues, as to contributory infringement, that each of its accused products have

significant noninfringing uses; Parallel, having the burden to prove otherwise, has failed

to do so. (Id.)

Parallel argues that it has provided sufficient circumstantial evidence of direct

infringement by Oracle customers, showing that Oracle instructs its customers “how to

use the Accused Oracle Products in an infringing manner” and that Oracle “freely and

openly strongly encourages them to do so.” (D.I. 275 at 29) As an example, Parallel

points to a presentation at “Oracle World,” a conference attended by “tens of

thousands” of Oracle customers and potential customers. (Id.) Parallel asserts that

“Oracle explained [at Oracle World] that the infringing metric-based load balancing was

‘the best way not to fall,’ i.e., the best way to prevent system crashes.” (Id. at 29-30)

Parallel further points to a “2004 ‘Best Practices’ document, [wherein] Oracle stated that

Oracle Web Cache ‘customers should use the built-in load balancing functionality in

Both forms of indirect infringement also require knowledge on the part of the18

accused infringer. The parties do not dispute this issue. Oracle argues that the timing
of its notice supporting the knowledge requirement affects the period of any alleged
infringement. (D.I. 205 at 37) The court does not reach this argument here.

28

OracleAS Web Cache to distribute cache miss traffic over the application Web server

farm.’” (Id. at 30) Parallel also asserts that it has provided direct evidence in the form

of deposition testimony and emails that admit to certain customers’ use of metric-based

load balancing configurations. (Id. at 32) The court finds that Parallel has proffered

sufficient circumstantial and direct evidence to withstand summary judgment as to this

point, thereby resolving the issue of induced infringement.

Contributory infringement may not be found, however, if the accused product is

either not “a material part of the invention,” or has a “substantial noninfringing use.”

Golden Blount, 365 F.3d at 1061. Referring to 35 U.S.C. § 271(c), Parallel argues that

“[t]he accused Oracle products, specialized computer software, are not the type of

staple articles of commerce intended to fit [this] narrow exception”. (Id. at 33) “The

word ‘staple’ means ‘a commodity that is produced regularly or in large quantities

[especially] for a wholesale market.’” (Id.) (citing Bliss & Laughlin Indus., Inc. v. Bil-Jax,

Inc., 356 F. Supp. 577, 580 (D. Ohio 1972)) A reasonable jury could find that the

accused products do not meet the definition of a staple article of commerce. Therefore,

the court denies Oracle’s motion for summary judgment of noninfringement as to

contributory infringement.

V. CONCLUSION

For the aforementioned reasons, the court denies Oracle’s motion for summary

judgment of noninfringement (D.I. 204). Parallel’s motion for partial summary judgment

of literal infringement (D.I. 223) is denied. An appropriate order will issue.

29

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF DELAWARE

ORACLE CORPORATION and
ORACLE AMERICA, INC.,

Plaintiffs,

v.

**PARALLEL NETWORKS, LLC,

Defendant.

)
)
)
)
)
) Civ. No. 06-414-SLR
)
)
)
)

ORDER

At Wilmington this 29th day of April 2011, consistent with the memorandum

opinion issued this same date;

IT IS ORDERED that:

1. Oracle's motion for summary judgment of noninfringement (D.1. 204) is

denied.

2. Parallel's motion for partial summary judgment of literal infringement (D.1.

223) is denied.

~~United States D trtctJUdQe

